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Abstract—Two Dimensional Wavelet Packet Spectrum estimataierived from statistical properties of waveleicket

coefficients of random process using Dual tree dempravelet transform. Previously Wavelet Packe¢c®um is derived
using Shannon wavelet but it is unable to perforthagonal analysis. The results illustrate the @feness of the wavelet-
based spectrum estimation using Dual tree complaxelet transform that it supports good compriseswfoothness

regarding Hurst parameter .

Index Terms— 2-D Wavelet Packet Spectrum (WPS), random fiefgictral analysis, spectrum estimation, Dual Tree

Complex Wavelet, texture.

1. INTRODUCTION
In the visual world, textures can be regarded asvibual

2. DUAL TREE
TRANSFORM

COMPLEX WAVELET

appearances of surfaces and may be perceived ag beiThe complex wavelet transform (CWT) is a complehsed

directional or non-directional, smooth or rougharse or
fine, regular or irregular, etc. Several textures abserved
on both artificial and natural objects and scefiée. surface
characteristics of textures can be used to receguiects
in image, to segment image and to understand ageifig.

The Textures play an important role, computer visimd
pattern recognition methods. However, illuminatiand

environment conditions can affect the appearance db produce the

textures, and complicate the tasks. Textures ihineages

extension to the standard discrete wavelet trams{@WT).

It is a 2-Dimensional wavelet transform which poans
multi-resolution, sparse representation, and useful
characterization of the structure of image. The e
complex wavelet transform (DTCWT) calculates the
complex transform of a signal using two separate TDW
decompositions (tree b and tree at is possiblefer DWT
real coefficients and the imaginary
coefficients. This redundancy of these two proviéetra

can vary in scale, brightness, and rotation as imgag information for analysis but at the expense of axtr

conditions change. Therefore, to enable texturdysisain
real images, texture representation should be igwarto
imaging conditions such as
viewpoint, scaling and lighting. A brief review dhe
invariant texture analysis methods is presentef2nThe
idea behind the definition of 2-D wavelet spectsatlie
following: since the tensor-product wavelet muégolution
analysis ofd dimensional data comprises of 2 detailed
spaces, with these each space containing the ttigraof
subspaces with nested dyadic resolutions, it iequétural
to assess the energy scaling in each hierarchg. [€ads to
29 -1 concurrent power spectra describing a sindle
dimensional data set. For example, multi-resolutinalysis

of images leads to three detail spaces described &8e

“horizontal”, “vertical” or “diagonal,” depending ro the
selection of the decomposing 2-D wavelet, or troep of
applications of high- and low-pass wavelet filtens the
rows and columns of 2-Dimensional objects. Eaclthefe
three directional detailed spaces contains a nésezdrchy
of sub-matrices corresponding to image detailsifétrdnt
scales and each leads to a distinctive power spectr

computational power It also provides approximatét-sh
invariance (unlike the DWT) vyet still allows perfec

non-rigid deformation,reconstruction of the signal. The filters desigpasticularly

important for the transform to occur correctly atfte
necessary characteristics are:
1. The low-pass filters in the two trees must diffgr b
half a sample period
2. Reconstruction filters for reverse analysis
3. Tree b filters are the reverse of tree a filters
4. Both trees have same frequency response

3. WAVELET PACKET SPECTRUM ESTIMATOR

A. 2-D Wavelet Packet

consider the 2-D separable wavelet packet
decomposition in a continuous time signal settirgg f
presenting theoretical results [8]. Advanced coteemnd
algorithms concerning 1D and 2-D wavelet packetyeisa
can be found in [8]. The reader is also invitedefer to [9],
[10] (wavelets) and [6], [11] (wavelet packets) farore
details on the statistical properties of waveleingforms,
when the decomposition relates to a random proteshis
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decomposition, the wavelet paraunitary filterg(ldw-pass,
scaling filter) and H (high-pass, wavelet filter) are used t(
split the input functional spacd = Wy, ¢ L%R?) into
orthogonal subspaces.
Assume that the scaling filter is with order ry H HI°,
where r is the largest non-negative integer

1+e”1®

r .
Hr'(0) = (25—) Q(e™) )
filter Hy® denoting the scaling filter associated with th
Symmlet wavelet. Then the 1D multiscale filters
(H"j,ni )i=1,2 have very tight supports wheis large.
B. Wavelet Packet Paths

This section presents a specific wavelet packeth pifit

S4 0.3968 0.3838
(0.042) (0.326)

0.3865 0.3766

c1 (0.042) (0.041)
0.3508 0.3427

Haar (0.041) (0.040)

description derived from the binary sequence apbrazf
[13] for representing nested wavelet packet sulespathis
description is suitable for establishing asymptptioperties
of 2-D wavelet packets with respect to the increafsthe
decomposition level. It is worth mentioning thatneo
specific paths will present singular behavior: Twavelet
coefficients of certain non-stationary random feeloh the
sub bands associated with these singular pathsrewiikin
nonstationary

As a matter of example,

1) The isotropic Fractional Brownian field analyzed
the

which admits a unique singular path:
approximation path denoted by Bnd associated
with frequency indices i j ) = O for every | .

2)
which admits frequency indices n(j ) such thgtjn
) = 0 (respectively 46 j ) = 0) for every | as

The wavelet based estimator was more robust wreedata
are contaminated by noise, even at a low level.

For comparative purpose we use Symmlet 4 sincdilies
provides a good compromise of smoothness, locaiity
near-symmetry in Table 1 we provide the summanisf
experiment.

C. 2-D Wavelet Packet based Spectrum Estimation

The Wavelet Packet Spectrum is estimated by using
Symmlet wavelet. The spectrum estimation method
presented in this section follows from the asymiptot
analysis of the autocorrelation functions of thB 2+avelet
packet coefficients. This asymptotic analysis isfqrened
with respect to the wavelet order and the wavelet

The separable Fractional Brownian field analyzedyjecomposition levej. Whenr increases, the asymptotic

behavior of the sequence of wavelet functions igedr by
the Symmlet wavelet functions. In this respect,omasider

singular frequency indices. The set of (singulane Symmlet wavelets in below and derive asymptotic
paths associated with these frequency indices Willog ts with respect to the wavelet decompositivel.

be denoted by Pnn0 (resp. Pn/s0).
In order to select the best performance of wavedested
estimator, we simulated 1000 fractional Browniaalds

with various H and for each field estimated the Hurst

parameter in each of the three directions.

Table 1: Means and standard deviations (in brackets) of th

estimated

Hurst exponents, by the waveleteblasstimators
(D4, s4,C1

and Haar) evaluated on 1000 sinedlatandom
fields withH =

®4 and lengthn = 256 x 256, with and without
noise in each case.

H=0.4
Wavelets
Snr=o Snr=20
D4 0.3920 0.3828
(0.042) (0.325)

The following provides a non-parametric method for
estimating spectrum of 2-D random fields on the basis of
the convergence criterion. It follows the equation

Y (@[Pl,o[P]) = lim j—+w R® [0, 0] so that the
continuity points of spectruny can be estimated by sub
band variances (values{ SR,n[O, O]} provided that the
Symmlet wavelet is used and j is large enough.
Furthermore, we can derive from the convergencerai
several spectrum estimators by considering waveildis
finite orders r, the accuracy of the spectrum estiom
being dependent on the wavelet order as shown
Proposition 3 below. Assuming a uniform sampling
(regularly spaced frequency plane tiling), the rodth
applies upon the following steps.

1) Define a frequency grid compose with frequenains

(J%,P;—i”) for P,P,€{0, 1, ..., 2 - 1} (natural
ordering). _

2) Compute, the index@ {0, 1, ...,4 -1}
(corresponding to the wavelet packet orderaggpociated
with (R, Py).

3) Set, for any pair (PP) given in step 1) and the
corresponding n obtained from second step ).

in
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There are three propositions to find Wavelet based’he comparison should be made with Wavelet Packet
Spectrum of Symmlet with Shannon which is shown in
Proposition 1:The height of this fractional moment dependsFigure 3.

Spectrum as shown below:

on the scaling function associated with the wavphatket
decomposition. Note also that when both n1 = 2 the
non-stationary in wavelet coefficients is morerigate,
mainly because the analyzing function has no vamsh
moments.

Proposition 2:The autocorrelation function of the wavelet
packet coefficients of separable and isotropic tfoaal
Brownian Field can be written in the integral form.
Proposition 3:We derive that the bias of the estimator given
by depends on the decomposition level and wawebitr
used. This bias tends to 0 when both j and r temd€inity.

4. FABRIC TEXTURE ANALYSISUSING
WAVELET PACKET SPECTRUM

The below shown Figure 1 is one of the Fabric texiand

then
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re 1: Fabric textu

Figu re
The Wavelet Packet Spectrum estimator is applietiso
texture information to derive Wavelet Packet Speutof
this texture which is as shown below Figure 2:

Figure 2: Wavelet Packet Spectrum for above falesiture

WPT-PSD Fabric Texture WPT-PSD

Using Symmlet using Shannon

Fu
using

j\“!e""" e /T >
3: Textures image and their spegtreomputed by

it
o,

I, R

Discrete Wavelet Packet Transformsing

Symmlet and

Shannon. Abscissa of the spectragas consists
regular grid [G/2] x [0, 7/2].

Note: Colors represented in Figure 3 are simulated feom
light source in order to ease 3-D visualizationd @lor
[value 1] corresponds to fully illuminated shapekevneas
blue color [value 0] is associated to shaded argesen
color corresponds to value 0.5.

5. ADVANTAGES

1.

2.

The best basis can provides suitable frequency sub
bands for the signal representation.

The over complete structure of WPT provides
flexibility for the signal representation to achéev
better classification accuracy.

The subject-based adaptation feature extraction
with this method constructs a wavelet packet best
basis fitted for each object and so it can find the
suitable and specific features for a subject'sagn
Provides more accurate information without losing
single unit also

6. APPLICATIONS

1.
2.

3.

Spread-spectrum image watermarking.

Hurst parameter estimation for self-similar medical
images, see for instance [6].

Texture modeling by using Wold decompositions
estimation the poles of the spectrum is necessary t
determine the spectral singularities involved ia th
deterministic texture contribution. These poles are
associated with peaks of the spectrum and their
number, as well as their location determines the
accuracy of the modeling.
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7. CONCLUSION

This section provides experimental results on spect

analysis of textures. A Wavelet Packet Spectrunfabfic
texture image is provided in Figure.2. The Wav@atket
Spectra have been computed with the decomposéia@i Is
6 and the Symmlet wavelet with order r = 7 is usukctra

computed from the Wavelet Packet Spectrum using
Shannon wavelet are also given in this figure 3 fo[9]

comparison purpose.
From a visual analysis of images, one can remakrniost
of this texture exhibit non overlapping textons liegiing

spectrum estimation,” IEEE Trans. Inf. Theory, &b,

no. 9, pp. 4741-4753, Sep. 2010.

M.V. Wickerhauser, Adapted Wavelet Analysis from
Theory to Software. Natick, MA, USA:AK Peters,
1994,

S.Mallat, A Wavelet Tour of Signal Processing, 2l
San Francisco, CA, USA:Academic, 1999.

S.Cambanis and C. Houdré, “On the continuous
wavelet transform of second-order random processes,
IEEE Trans. Inf. Theory, vol. 41, no. 3, pp. 628264
May 1995.

repeatedly: thus, coarsely, we can distinguish re¢ve [10]P.Flandrin, “Wavelet analysis and synthesis of

frequencies having significant variance contribasigfrom
a theoretical consideration), when the texture does
reduce to the replications of a single texton. tiditon,
when these textons occupy approximately the saratasp
area (see for instance “Fabric” textures in Figlije the
frequencies with high variance contributions (péakthe
spectrum) are close in terms of their spatial liocafrom a
theoretical consideration).

The above heuristics, issued from visual imageyaiglare

fractional Brownian motion,” IEEE Trans. Inf. Thgor
vol. 38, no. 2, pp. 910-917, Mar. 1992.

[11]A.M.Atto and Y. Berthoumieu, “Wavelet packets of

nonstationary random processes: Contributing factor
for stationarity and decorrelation,” IEEE Transf.In
Theory, vol. 58, no. 1, pp. 317-330, Jan. 2012.

[12]C.S.Burrus, R. A. Gopinath, and H. Guo, Introduttio

to Wavelets and Wavelet Transforms: A Primer.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1998.

confirmed by considering the Wavelet Packet Spettfzee
for instance spectra of “Fabric” textures in Figu2g
whereas, in most cases, the two dimensional deséetirier
transform exhibits only one peak.

On comparison with Shannon wavelet, Symmlet wavelet
provides a good compromise of smoothness, localitg
near-symmetry. It does not lose even single unit of
information.

[13]Y.Meyer, Wavelets, Algorithms and Applications.
Philadelphia, PA, USA: SIAM, 1993.
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