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Abstract—Two Dimensional Wavelet Packet Spectrum estimator is derived from statistical properties of wavelet packet 
coefficients of random process using Dual tree complex wavelet transform. Previously Wavelet Packet Spectrum is derived 
using Shannon wavelet but it is unable to perform orthogonal analysis. The results illustrate the effectiveness of the wavelet-
based spectrum estimation using Dual tree complex wavelet transform that it supports good comprise of smoothness 
regarding Hurst parameter . 
 
Index Terms— 2-D Wavelet Packet Spectrum (WPS), random fields, spectral analysis, spectrum estimation, Dual Tree 
Complex Wavelet, texture. 

 
1. INTRODUCTION 

In the visual world, textures can be regarded as the visual 
appearances of surfaces and may be perceived as being 
directional or non-directional, smooth or rough, coarse or 
fine, regular or irregular, etc. Several textures are observed 
on both artificial and natural objects and scenes. The surface 
characteristics of textures can be used to recognize objects 
in image, to segment image and to understand an image [1]. 
The Textures play an important role, computer vision and 
pattern recognition methods. However, illumination and 
environment conditions can affect the appearance of 
textures, and complicate the tasks. Textures in real images 
can vary in scale, brightness, and rotation as imaging 
conditions change. Therefore, to enable texture analysis in 
real images, texture representation should be invariant to 
imaging conditions such as non-rigid deformation, 
viewpoint, scaling and lighting. A brief review of the 
invariant texture analysis methods is presented in [2]. The 
idea behind the definition of 2-D wavelet spectra is the  
following: since the tensor-product wavelet multi-resolution 
analysis of d dimensional data comprises of 2d -1 detailed 
spaces, with these each space containing the hierarchy of   
subspaces with nested dyadic resolutions, it is quite natural 
to assess the energy scaling in each hierarchy. This leads to 
2d -1 concurrent power spectra describing a single d-
dimensional data set. For example, multi-resolution analysis 
of images leads to three detail spaces described as 
“horizontal”, “vertical” or “diagonal,” depending on the 
selection of the decomposing 2-D wavelet, or  the order of 
applications of high- and low-pass wavelet filters on the 
rows and columns of 2-Dimensional objects. Each of these 
three directional detailed spaces contains a nested hierarchy 
of sub-matrices corresponding to image details at different 
scales and each leads to a distinctive power spectra. 

 
2. DUAL TREE COMPLEX WAVELET 

TRANSFORM 
The complex wavelet transform (CWT) is a complex-valued 
extension to the standard discrete wavelet transform (DWT). 
It is a 2-Dimensional wavelet transform which provides 
multi-resolution, sparse representation, and useful 
characterization of the structure of image. The Dual-tree 
complex wavelet transform (DTCWT) calculates the 
complex transform of a signal using two separate DWT 
decompositions (tree b and tree at is possible for one DWT 
to produce the real coefficients and the imaginary 
coefficients. This redundancy of these two provides extra 
information for analysis but at the expense of extra 
computational power It also provides approximate shift-
invariance (unlike the DWT) yet still allows perfect 
reconstruction of the signal. The filters design is particularly 
important for the transform to occur correctly and the 
necessary characteristics are: 

1. The low-pass filters in the two trees must differ by 
half a sample period 

2. Reconstruction filters for reverse analysis 
3. Tree b filters are the reverse of tree a filters 
4. Both trees have same frequency response 

 
3. WAVELET PACKET SPECTRUM ESTIMATOR 
A.  2-D Wavelet Packet 
We consider the 2-D separable wavelet packet 
decomposition in a continuous time signal setting for 
presenting theoretical results [8]. Advanced concepts and 
algorithms concerning 1D and 2-D wavelet packet analysis 
can be found in [8]. The reader is also invited to refer to [9], 
[10] (wavelets) and [6], [11] (wavelet packets) for more 
details on the statistical properties of wavelet transforms, 
when the decomposition relates to a random process. In this 
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decomposition, the wavelet paraunitary filters H0 (low-pass, 
scaling filter) and H1 (high-pass, wavelet filter) are used to 
split the input functional space U = W0,0 ⊂ L2(R2) into 
orthogonal subspaces. 
Assume that the scaling filter is with order r: H0 ≡ Hr0, 
where r is the largest non-negative integer 

Hr��ω� = �	
�
�ω

� �
�
Q�e�ω�                                                                    (1) 

filter H0
s denoting the scaling filter associated with the 

Symmlet wavelet. Then the 1D multiscale filters  
(Hr j,ni )i=1,2 have very tight supports when r is large. 
B. Wavelet Packet Paths 
This section presents a specific wavelet packet path 
description derived from the binary sequence approach of 
[13] for representing nested wavelet packet subspaces. This 
description is suitable for establishing asymptotic properties 
of 2-D wavelet packets with respect to the increase of the 
decomposition level. It is worth mentioning that some 
specific paths will present singular behavior: The wavelet 
coefficients of certain non-stationary random fields on the 
sub bands associated with these singular paths will remain 
nonstationary 
. 
As a matter of example, 

1) The isotropic Fractional Brownian field analyzed 
which admits a unique singular path: the 
approximation path denoted by P0 and associated 
with frequency indices nP0 ( j ) = 0 for every j . 

2) The separable Fractional Brownian field analyzed 
which admits frequency indices n( j ) such that n1( j 
) = 0 (respectively  n2( j ) = 0) for every j as 
singular frequency indices. The set of (singular) 
paths associated with these frequency indices will 
be denoted by Pn/n1=0 (resp. Pn/n2=0). 

In order to select the best performance of wavelet-based 
estimator, we simulated 1000 fractional Brownian fields 
with various H and for each field estimated the Hurst 
parameter in each of the three directions. 
 
Table 1: Means and standard deviations (in brackets) of the 
estimated   
                Hurst exponents, by the wavelet-based estimators 
(D4, S4, C1  
                and Haar) evaluated on 1000 simulated random 
fields with H =  
               0:4 and length n = 256 x 256, with and without 
noise in each case. 
 

 
Wavelets 

               H=0.4 

 
 
 

D4 
 

Snr=∞ Snr=20 
 
 

0.3920 
(0.042) 

 
 

0.3828 
(0.325) 

 
S4 
 
 
 

C1 
 
 

Haar 

 
0.3968 
(0.042) 

 
0.3865 
(0.042) 

 
0.3508 
(0.041) 

 
 
 
 

 
0.3838 
(0.326) 

 
0.3766 
(0.041) 

 
0.3427 
(0.040) 

 

 
The wavelet based estimator was more robust when the data 
are contaminated by noise, even at a low level. 
For comparative purpose we use Symmlet 4 since this filter 
provides a good compromise of smoothness, locality and 
near-symmetry in Table 1 we provide the summary of this 
experiment. 
 
C. 2-D Wavelet Packet based Spectrum Estimation 
The Wavelet Packet Spectrum is estimated by using 
Symmlet wavelet. The spectrum estimation method 
presented in this section follows from the asymptotic 
analysis of the autocorrelation functions of the 2-D wavelet 
packet coefficients. This asymptotic analysis is performed 
with respect to the wavelet order r and the wavelet 
decomposition level j. When r increases, the asymptotic 
behavior of the sequence of wavelet functions is driven by 
the Symmlet wavelet functions. In this respect, we consider 
the Symmlet wavelets in below and derive asymptotic 
results with respect to the wavelet decomposition level.  
The following provides a non-parametric method for 
estimating spectrum γ of 2-D random fields on the basis of 
the convergence criterion. It follows the equation 
 γ (ω1[P],ω2[P]) = lim j→+∞ RS j,n[0, 0]  so that the 
continuity points of spectrum γ can be estimated by sub 
band variances (values{ RS j,n[0, 0]} provided that the 
Symmlet wavelet is used and j is large enough. 
Furthermore, we can derive from the convergence criteria, 
several spectrum estimators by considering wavelets with 
finite orders r, the accuracy of the spectrum estimation 
being dependent on the wavelet order as shown in 
Proposition 3 below. Assuming a uniform sampling 
(regularly spaced frequency plane tiling), the method 
applies upon the following steps. 
1) Define a frequency grid compose with frequency points 

    (
���
�� ,

���
�� )  for P1,P2 ∈ {0, 1, . . . , 2 j − 1} (natural    

     ordering). 
2) Compute, the index n ∈ {0, 1, . . . , 4 j − 1}    
    (corresponding to the wavelet packet ordering) associated   
     with (P1, P2). 
3) Set, for any pair (P1, P2) given in step 1) and the  
    corresponding n obtained from second step ). 
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There are three propositions to find Wavelet based 
Spectrum as shown below: 
Proposition 1: The height of this fractional moment depends 
on the scaling function associated with the wavelet packet 
decomposition.  Note also that when both n1 = n2 = 0, the 
non-stationary in wavelet coefficients   is more intricate, 
mainly because the analyzing function has no vanishing 
moments.  
Proposition 2: The autocorrelation function of the wavelet 
packet coefficients of separable and isotropic Fractional 
Brownian Field can be written in the integral form.  
Proposition 3: We derive that the bias of the estimator given 
by depends on   the decomposition level and wavelet order 
used. This bias tends to 0 when both j and r tends to infinity. 
 
4.  FABRIC TEXTURE ANALYSIS USING 

WAVELET PACKET SPECTRUM 
The below shown Figure 1 is one of the Fabric texture and 
then  

 
Figure 1: Fabric texture 

 
The Wavelet Packet Spectrum estimator is applied to this 
texture information to derive Wavelet Packet Spectrum of 
this texture which is as shown below Figure 2: 

 
Figure 2: Wavelet Packet Spectrum for above fabric texture 

 

The comparison should be made with Wavelet Packet 
Spectrum of Symmlet with Shannon which is shown in 
Figure 3.  
           
            WPT-PSD              Fabric Texture           WPT-PSD 
        Using Symmlet                                        using Shannon 

 
Figure 3: Textures image and their spectra γ computed by 
using   
               Discrete Wavelet Packet Transforms using 
Symmlet and   
               Shannon. Abscissa of the spectra  images  consists 
               regular grid  [0, π/2] × [0, π/2]. 
 
Note: Colors represented in Figure 3 are simulated from a 
light source in order to ease 3-D visualization: red color 
[value 1] corresponds to fully illuminated shapes whereas 
blue color [value 0] is associated to shaded areas, green 
color corresponds to value 0.5. 

 
5. ADVANTAGES  

1. The best basis can provides suitable frequency sub 
bands for the signal representation. 

2. The over complete structure of WPT provides 
flexibility for the signal representation to achieve 
better classification accuracy. 

3. The subject-based adaptation feature extraction 
with this method constructs a wavelet packet best 
basis fitted for each object and so it can find the 
suitable and specific features for a subject's signals. 

4. Provides more accurate information without losing 
single unit also 

 
6. APPLICATIONS  

1. Spread-spectrum image watermarking. 
2. Hurst parameter estimation for self-similar medical 

images, see for instance [6]. 
3. Texture modeling by using Wold decompositions 

estimation the poles of the spectrum is necessary to 
determine the spectral singularities involved in the 
deterministic texture contribution. These poles are 
associated with peaks of the spectrum and their 
number, as well as their location determines the 
accuracy of the modeling. 
 
 
 



International Journal of Research in Advent Technology, Vol.2, No.9, September 2014 
E-ISSN: 2321-9637 

 

106  

7. CONCLUSION 
This section provides experimental results on spectral 
analysis of textures. A Wavelet Packet Spectrum of fabric 
texture image is provided in Figure.2. The Wavelet Packet 
Spectra have been computed with the decomposition level is 
6 and the Symmlet wavelet with order r = 7 is used. Spectra 
computed from the Wavelet Packet Spectrum using 
Shannon wavelet are also given in this figure 3, for 
comparison purpose. 
From a visual analysis of images, one can remark that most 
of this texture exhibit non overlapping textons replicating 
repeatedly: thus, coarsely, we can distinguish several 
frequencies having significant variance contributions (from 
a theoretical consideration), when the texture does not 
reduce to the replications of a single texton. In addition, 
when these textons occupy approximately the same spatial 
area (see for instance “Fabric” textures in Figure 1), the 
frequencies with high variance contributions (peak in the 
spectrum) are close in terms of their spatial location (from a 
theoretical consideration). 
The above heuristics, issued from visual image analysis, are 
confirmed by considering the Wavelet Packet Spectrum (see 
for instance spectra of “Fabric” textures in Figure 2), 
whereas, in most cases, the two dimensional discrete Fourier 
transform exhibits only one peak. 
On comparison with Shannon wavelet, Symmlet wavelet 
provides a good compromise of smoothness, locality and 
near-symmetry. It does not lose even single unit of 
information. 
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